精选问答

大数据专业有没有考证的?学大数据的都需要考哪些证书?

字号+ 题主:吳大同 2021-11-08 12:55:01 我要评论

我想了解关于“大数据专业有没有考证的?学大数据的都需要考哪些证书?”的信息,请大家多多发言。

Toshihiko1912 - 2021-11-08 13:23:20 【精选答案】感谢邀请!据我所知,目前需要软考的数据分析师证件!而且目前这个软考的属于职称证书两用证件。是升职加薪的必备品,同时也是身份认证的时候都是需要的!另外一个证书人设部大数据分析师和高级数据分析师,属于培训取得的证书也是国际化双证证书的项目之一,对比一下考试起来相对简单易得,推荐考试这个比软考简单粗暴。常规的软件认证和计算机等级证书目前只能作为基本功和基层的认证,与大数据只起到辅助作用!

云游四海 - 2021-11-08 14:34:22 ”大数据并不需要考证,就业的时候全凭真才实学

假装一朵花 - 2021-11-08 14:03:22 ” 1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则
6.需要有一定的计算机,系统,编程能力。dmer 的熟练使用。

寒泉 - 2021-11-08 13:45:27 ”获得数据分析师认证证书,取得行业敲门金砖,并进而成功拿到心仪企业的Offer,是不少求职者的梦想。市场中的证书较多,有些是含金量高的,而有些是价值低的,大家一定要选择到好的认证。在这里给大家比较下目前市场中的数据分析类证书。一般认证机构是两种类型,一种是国家部门认证,一种是行业性质认证。l 国家部门认证
目前国家部门关于数据分析的认证还没有一个权威的机构。大数据属于新兴科技,一般前沿技术会先实践于企业之中,而相关部门的了解会有滞后性,所以关于大数据和数据分析的专业化技能、知识体系等主要是流行于高科技企业之中,在这个行业成熟之前,国家部门是无法颁发具备专业性兼具认可度和权威性的证书。目前有发证的机构是工信部、教育部、人社部,这几个部门发的证书更多是一个技能的证明,因为在他们管理的上千个认证中,根本无法做到专业,这些证书可能会在国有企事业单位中有一定的参考作用,但并不具有评职称作用,在大数据行业内也无人问津。l 行业性质认证
1.SAS认证
SAS全球专业认证是由SAS公司颁发的、国际上公认的数据挖掘和商业智能领域的权威认证,随着我国DT环境和应用的日渐进步,以上两个领域将有极大的行业发展空间。获取SAS全球专业认证,会让您在数据挖掘、数据分析领域积累丰富经验奠定良好的基础。但是SAS面临的问题在于,越来越多的竞争性开源软件进入市场,如R语言,PYTHON,Spark等等,由于SAS昂贵的费用,导致自身软件的使用率下降,市场占有率低,在中国一般是大型银行有用到SAS,而其他单位的使用逐年减少。因此SAS证书对于大多数的数据分析人士来讲,如果你是倾向于找国有大型银行的工作,可以考虑;如果你是希望去北美发展,也可以考虑;但如果没有这种机会,最好还是考个其他的认证。by the way,Oracle的认证也类似,不过Oracle的认证没有SAS的好使
2.Coursera
Coursera是免费大型公开在线课程项目,由美国斯坦福大学两名计算机科学教授创办。旨在同世界顶尖大学合作,在线提供免费的网络公开课程。Coursera的首批合作院校包括斯坦福大学、密歇根大学、普林斯顿大学、宾夕法尼亚大学等美国名校。Coursera证书是每门课程的结业证书,代表修过这门课程并具备相关技能,在美国来讲一些学校是认可的,对申报留学也许有一些作用,但是在国内来讲也更多是一个技能参考作用。by the way,edx也类似
3.CDA数据分析师认证
CDA认证是由CDA Institute发起,在国内由经管之家承办的数据分析师专业证书。是一套专业化,科学化,国际化,系统化的人才考核标准,分为LEVELⅠ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医疗、互联网、电信等行业大数据及数据分析从业者所需要具备的技能,符合当今全球大数据及数据分析技术潮流。每年6月与12月底在全国范围举办线下数据分析师考试,通过考试者可获得CDA数据分析师认证证书。CDA认证目前已被德勤(Deloitte)、苏宁、中国电信、重庆统计局等企业单位纳入到了内部员工的考核之中,并且来自百度、阿里、京东、惠普、中国银行、IBM、联想、移动、华为、尼尔森宝马、奔驰及政府部门等企业单位的员工有考取CDA认证,并获得了不错的薪资和职位。由于CDA数据分析师专注于数据分析和大数据领域,每年投入大量的资金和人力用于研发,目前CDA认证算是国内最具认可度、含金量最高的证书。4.BDA认证
BDA是由中国商业统计学会设立的数据分析师培训与考试项目,为提高数据分析工作人员的业务素质。分为初、中、高三个级别,该认证近两年才出来,属于一个新的证书,目前还没有一定的知名度。相关的宣传网站建设还不完善,知识体系还不够强,不推荐大家考取。其他的一些机构认证大多是自己公司的培训证书,就更没有参考价值了。以上推荐的相关资源,希望能帮助大家快速进步,学习到必备技术,获取到认证证书,为自己的数据分析职业道路做好扎实的铺垫!

echochen - 2021-11-08 13:35:01 ”大讲台大数据培训为你解答:
简而言之,从大数据中提取大价值的挖掘技术。专业的说,就是根据特定目标,从数据收集与存储,数据筛选,算法分析与预测,数据分析结果展示,以辅助作出最正确的抉择,其数据级别通常在PB以上,复杂程度前所未有。关键作用是什么?挖掘出各个行业的关键路径,帮助决策,提升社会(或企业)运作效率。最初是在怎样的场景下提出?在基础学科经历信息快速发展之后,就诞生了“大数据”的说法。但其实是随着数据指数级的增长,尤其是互联网商业化和传感器移动化之后,从大数据中挖掘出某个事件现在和未来的趋势才真正意义上被大众所接触。大数据技术包含的内容概述?非结构化数据收集架构,数据分布式存储集群,数据清洗筛选架构,数据并行分析模拟架构,高级统计预测算法,数据可视化工具。大数据技术学习路线指南:
大数据技术的具体内容?分布式存储计算架构(强烈推荐:Hadoop)
分布式程序设计(包含:ApachePig或者Hive)
分布式文件系统(比如:GoogleGFS)
多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo,DynamoDB等)
数据收集架构(比如:Kinesis,Kafla)
集成开发环境(比如:R-Studio)
程序开发辅助工具(比如:大量的第三方开发辅助工具)
调度协调架构工具(比如:ApacheAurora)
机器学习(常用的有ApacheMahout或H2O)
托管管理(比如:ApacheHadoopBenchmarking)
安全管理(常用的有Gateway)
大数据系统部署(可以看下ApacheAmbari)
搜索引擎架构(学习或者企业都建议使用Lucene搜索引擎)
多种数据库的演变(MySQL/Memcached)
商业智能(大力推荐:Jaspersoft)
数据可视化(这个工具就很多了,可以根据实际需要来选择)
大数据处理算法(10大经典算法)
大数据中常用的分析技术?A/B测试、关联规则挖掘、数据聚类、
数据融合和集成、遗传算法、自然语言处理、
神经网络、神经分析、优化、模式识别、
预测模型、回归、情绪分析、信号处理、
空间分析、统计、模拟、时间序列分析

我有更好答案

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

猜你感兴趣
看了又看